

EXAMEN DE FIN D'ÉTUDES SECONDAIRES CLASSIQUES 2020

BRANCHE	SECTION(S)	ÉPREUVE ÉCRITE
Physique	CB, CLB, CC, CLC	Durée de l'épreuve :
		Date de l'épreuve :

I Champ électrique uniforme

(1+7+2+3=13p)

Un faisceau de particules alpha pénètre avec une vitesse $\overrightarrow{v_0}$, à mi-hauteur entre les deux armatures horizontales d'un condensateur plan, dans un champ électrique créé par ce condensateur. Leur vecteur vitesse forme un angle de 30° (obliquement vers le haut) avec l'horizontale et a une norme de 600 km/s. La longueur des armatures vaut 8 mm et elles sont distantes de 4 mm.

- 1) Préciser la polarité des armatures et le sens du champ électrique pour qu'à la sortie du condensateur, les particules se trouvent à 1 mm en-dessous de leur point d'entrée. (1)
- 2) Établir l'expression de l'accélération des particules alpha et en déduire les équations horaires du mouvement et l'équation cartésienne de la trajectoire. (7)
- 3) Calculer la norme du champ électrique entre les armatures. (2)
- 4) En supposant que le champ électrique vaut 983 kV/m, calculer l'angle sous lequel les particules quittent le condensateur. (3)

II Cyclotron

(7+2+1+1+1+1+2=15p)

On place un proton sans vitesse initiale au centre d'un cyclotron afin de l'accélérer.

1) Décrire le fonctionnement d'un cyclotron.

Représenter **les** vecteur**s** champ et **les** vecteur**s** force qui influencent le mouvement du proton. Préciser **où** ces champs règnent et expliquer si leur **sens** sont constants au cours du temps.

(7)

- 2) On sait que le rayon de la trajectoire circulaire du proton dans la partie déviatrice du cyclotron est donné par la relation : $r = \frac{mv}{|a|B}$:
 - a) Établir l'expression de la période du proton. (2)
 - b) Expliquer pourquoi la période de la tension accélératrice alternative est la même que celle du proton. (1)
 - c) Calculer la fréquence de cette tension accélératrice alternative sachant que le champ magnétique qui règne dans le cyclotron a une intensité de 656 mT. (1)
- 3) Le proton (non relativiste) quitte le cyclotron avec une vitesse de 16 000 km/s. Calculer le diamètre du cyclotron. (1)
- 4) Calculer l'énergie cinétique acquise par le proton dans le cyclotron. (1)
- 5) Vrai ou Faux? Motiver la réponse.

La vitesse avec laquelle le proton quitte le cyclotron est quatre fois plus élevée si (l'amplitude de) la tension accélératrice est doublée. (2)

III	Oscillations mécaniques non amorties (5+2+2+2+1+2=14p)	
1) Étal	olir l'équation différentielle du pendule élastique ho	rizontal non amorti.	(5)
2) Pro est val	poser une solution de cette équation différentielle e able.	et vérifier sous quelle cor	ndition elle (2)
	hant que le pendule a une masse de 25 g et que la fré calculer la raideur du ressort.	equence propre des oscilla	ations vaut (2)
	pendule précédent a été lancé à l'instant initial à par e en lui communiquant une énergie de 710 mJ. a) Sachant que la raideur de ce pendule vaut 142		itude et sa
	phase initiale. b) Écrire l'équation horaire de sa position (avec val. c) Calculer la vitesse maximale du pendule.	leurs numériques).	(2)(1)(2)
IV	Ondes progressives sur un corde	(6+(1+2+2)+3+2+2	2=18p)
Illustre	liquer ce qu'on entend par double périodicité d'une er chacune de ces périodicités par un graphique.		dale.
Expliq	uer clairement ce qui est représenté sur chaque axe	du graphique.	(6)
sur un	vibreur produit en une extrémité O d'une corde une visegment d'une longueur de 16 mm. Ition d'onde (de l'onde qui se propage sur la corde) $y(x,t) = Y_{max} \sin (50\pi t - 4\pi x + \frac{\pi}{2}) \text{ (x en response)}$	est donnée par la re	• •
	a) Quelle est la valeur de l'amplitude du vibreur ?b) Trouver la valeur de la période du vibreur et calcc) Trouver la valeur de la longueur d'onde et calcule	<u>-</u>	(1) (2) (2)
	culer l'instant lors duquel le point M, d'abscisse $x = position d'équilibre.$	75 cm, passe pour la deu	ixième fois (3)
4) Vra	i ou Faux ? Motiver votre réponse. a) Les points O et M précédents vibrent en opposition	on de phase.	(2)
	b) Afin doubler la célérité de l'onde progressive su corde deux fois plus fortement.	r cette même corde, il fau	t tendre la (2)